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It is shown that the generalized Poincaré and Chetayev equations, which represent the equations of motion of mechanical systems
using a certain closed system of infinitesimal linear operators, are related to the fundamental equations of analytical dynamics.
Equations are derived in quasi-coordinates for the case of redundant variables; it is shown that when an energy integral exists
the operator X, = 9/ satisfies the Chetayev cyclic-displacement conditions. Using the energy integral the order of the system
of equations of motion is reduced, and generalized Jacobi-Whittaker equations are derived from the Chetayev equations. It is
shown that the Poincaré—Chetayev equations are equivalent to a number of equations of motion of non-holonomic systems, in
particular, the Maggi, Volterra, Kane, and so on, equations. On the basis of these, and also of other previously obtained results,
the Poincaré and Chetayev equations in redundant variables, applicable both to holonomic and non-holonomic systems, can be
regarded as general equations of classical dynamics, equivalent to the well-known fundamental forms of the equations of motion,
a number of which follow as special cases from the Poincaré and Chetayev equations. © 1997 Elsevier Science Ltd. All rights
reserved.

Poincaré’s remarkable idea [1] and Chetayev’s fine theory [2-4] on the application of Lie groups to
represent the equations of motion of holonomic systems have been developed in a number of papers
[5-20].

Thus, equations in variations for Poincaré’s equations have been obtained and the existence of a
principal invariant for the latter equations has been investigated in [5, 6]. The equations of motion of
a system with an infinite number of degrees of freedom—a rigid body with a cavity containing a liquid,
have been derived in the form of Poincaré and Chetayev equations [7]. One of the methods of
constructing groups of possible displacements has been described in [8]. An extension and an application
of the Chetayev cyclic displacements have been given and, in particular, an extension of Chaplygin’s
area theorem has been obtained, and some theorems of the interaction between the parts of a system
have been established [9-11].

In a number of papers {12-14], Poincaré’s equations were applied for the first time to non-holonomic
systems, for which the system of operators of virtual displacements, as was shown, is not closed, whereas
it is for holonomic systems. Poincaré’s equations were derived by several methods for non-holonomic
systems and it was shown that they are equivalent to many well-known equations, such as Appell’s,
Hamel’s, Volterra’s, Chaplygin’s, Ferrers’ and other equations.

In a number of papers [15-18], by means of a non-linear reversible replacement of the momenta,
the Hamiltonian of the system was reduced to a form close to the Poincaré—Chetayev system. The con-
sequences were a theorem on complete integrability, integrability on integral manifolds, and on classes
of equivalence of Hamilton systems. A new method of obtaining particular solutions from familiar first
integrals was proposed. For the case when the kinetic energy is independent of the coordinates, the
conditions for a complete set of linear integrals to exist were established, and quadratures for these
were obtained. By introducing redundant Poincaré parameters, equations of motion of non-holonomic
systems were obtained for the case of stationary constraints, and expressions were derived for the
reactions of the latter. Equations of the hydrodynamic type, and so on were obtained from the
Poincaré—Chetayev equations.

It was proved in [19, 20] that the canonical Chetayev equations are the Hamilton equations in non-
canonical variables. It was shown that the Lagrange and Hamilton systems of generalized equations in
redundant coordinates, and also the equations in quasi-coordinates, are special cases of the
Poincaré—Chetayev equations, the theory of which was thereby extended to these systems of equations.
The equations of motion of non-holonomic systems were also derived in the form of Poincaré equations,
which are outwardly different, but are equivalent to the equations derived in {12-14], and in the form
of Chetayev equations.
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1. HOLONOMIC SYSTEMS

1.1. Defining coordinates, parametrization of the constraints

Consider a mechanical holonomic system with k degrees of freedom. The system position in space
at any instant of time ¢ is given by the governing coordinates [4]x; (i = 1,...,n = k), r, =1, (1, Xy, . .
.,X%,) (0 =1,...,N), where r, is the radius vector of a mass point of mass m1,. When n = k the variables
x; are independent Lagrange coordinates, and when n > & they are dependent, or redundant coordinates,
subject to constraints, specified by the integrable system of differential equations

;= aj; (1, X1, ooy Xpy X+ aﬂ(tv Xy oo X =0,j= k+1,
rank (aj,~) = n—k, J'c,~ = dx,-/dt.
. Everywhere summation is carried out over repeated subscripts.
The introduction of redundant coordinates is useful in some cases in order to simplify the expressions

for the kinematic and dynamic quantities [21].
For symmetry and brevity we will conventionally put ¢ = x

a;x)x=0,i=0,1,..nj=k+1,..,n (1.1)

where x = (xg, Xy, . - . , Xp)-
The sufficient conditions for Eqs (1.1) to be integrable, as is well known [22], have the form

da; Oa,
Br o a’s, r, s=0,1, ..., n; j=k+1, .., n (1.2)
ox, Oox,

We will complete (1.1) by the arbitrarily chosen linear forms

n= asi(x)xi, s = 0, 1, Ceey k, i= 0,1, vy N, MNp= 1, ap; = sa (1-3)
which are linearly independent both of one another and in relation to the forms (1.1), so that det (a;)

# 0(,j=0,1,...,n), where §; is the Kronecker delta.
Solving Egs (1 1) and (1.3) for x;, we obtain the parametric representation of the constraints

X.’ = bi.\'(x)n.h §= 011,«“’ k! l = 0’1’ » N, bos 805 (1.4)
where a.b;, = a,b; = d,,.

1.2. System of operators, Poincaré parameters
Parametrization (1.4) enables us to construct a closed system of infinitesimal linear operators

Xf=bL s=01 ... k f(x)eC? (15)
ox;
defining the virtual and real displacements of the system
=w0Xf, r=1..., kdf=nXfd,s=01, ..,k (1.6)
respectively, where o, = a,;(x)d; ( = 1,...,n;r = 1, ..., k) and 1, are the parameters of the virtual

and real displacements, introduced by Poincaré [1].
The system of operators (1.5) is a closed system in the sense that its commutator (the Poisson bracket)
has the form

Xr, X=X XS~ X Xf = c, "X, f,m, 7, s =0,1,. ... k (1.7)

where the structural coefficients

s - h.b, = A p, L5 _p ir .
Cps = [ ax axj ]b,s jr = Oy (b‘r aXi b,s a , I, J= 0,1, (1 8)
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where ¢ = -7, ¢l =0 (m,r,s =0,1,...,k). The commutator is bilinear, skew-symmetric and satisfies
the Jacobi identity; in turn it is first-order differential operator [4, 23].

By an appropriate choice of the auxiliary forms (1.3) we can reduce the closed system (1.5) to the
Lie group, when all ci; = const [4]. That very case was considered by Poincaré and by Chetayev. However,
in the general case of the closed system (1.5), the coefficients ¢y will, generally speaking, be variable,
and this case is not excluded further from consideration.

Note that if the forms (1.3) are integrable, like forms (1.1), conditions (1.2) are also satisfied forj =

1,...,k, and functions of the form n; = m,(x) then exist which can serve as new defining coordinates,
and besidesn, =, (s = 1, ..., k), and also

o, _om, _, 9% _ 9% _,

ox, ox; ' om, om, °

In this case, the system of operators (1.5) is an Abelian group of the functions

o o .
X.f=b,——= , §=0,1, ..., k; i=0,1, ...,
of =bi ox, onm, s ! "
for which all the coefficients ¢; = 0 (m,r,5s =0, 1,. .., k).

If the forms (1.3) are not integrable, the quantities m,(x) as functions of time and the coordinates do
not exist, but the symbols =, are reasonably introduced into consideration under the name of quasi-
coordinates, using the conventional notation for the quasi-velocities 1, = 7t; and the differentials of the
quasi-coordinates dr, = Mdt, and also for the “partial derivatives with respect to the quasi-coordinates”
and for the inverse relations [21]

Sy S S _ I -
., =b, 35" 3x, =a P i=01, .., n s=01, ..., &k (1.9)

By (1.9) the operators (1.5) in this case can be represented in the form
X, f=0df/on,, s=0,1, ..., k (1.10)
with commutator (1.7), which takes the form

_9f P .
[Xr’ Xs]f_ an'.aﬂs aﬂsaﬂr “crs anm

where, in general, ¢/; # 0.
The parameters 7; and a; are linked by the following relations

doyjdt - dn; = o, ir,s=0,1,...,k (1.11)
initially established by Poincaré for the case when c’, = 0.

Note that expression (1.11) is equivalent to that for the external derivative of the form «; = a,dx;.
Expressions for the coefficients ¢, are more easily obtained from relations (1.11) than by using the
general formulae (1.8) [21].

1.3. Poincaré’s equations

Poincaré [1] and Chetayev [2, 3] used the Hamilton principle to derive the equations, while Chetayev

[4] also used the d’Alembert—Lagrange principle in the traditional form
(m,j, —F,)- or,=0,v=1,.., N (1.12)

We will use the d’Alembert-Lagrange principle in the defining coordinates [4]

(—d—a—L—a—L—Q,.)Sx,-=O, i=1, .., n (1.13)
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when L(t, x, x) = T(t, x, ) + U(t, x) is the Lagrange function, T(¢, x, x) is the kinetic energy, U(t, x)
is the force function,x = (x,...,%,), X = (X1,...,%,), @i = FV*H~ dr,/dx; is the generalized non-potential
force.

By (1.5) and (1.6) we have

x=0Xx=0b;i=1,....,ms=1, ...,k

as a consequence of which, by virtue of the arbitrariness of «;, Maggi’s equations of motion [24] follow
from (1.13), namely

d oL
(__._._a_L-Q'.)bis=O, s=1, .., k (114)

Using (1.4) we can express the Lagrange function in the form of the equality L*(t,x, n) = L(t, x, X),
by differentiating which and using (1.3) we obtain the relations [25]

§£__-3L. a.: ._a_é_--.a_lf_.‘. oL’ aam/b o, + aamo i i=0.1 n
% om, ™ 3 ox am,| o a [T
doL _dfaL oL | da,, da,,;
Lo _ 2l g von | Lmip q +Zm | =01, ..., k
dt ax dt(anm) ™ a“m ( axj ! " ot
substitution of which into (1.14) leads to Poincaré’s equations
d aL oL aL’ o
m—, e —+ XL +0Q,, m, r, s=1, ..., k 1.15
dt an =Cp anm N, + Cos anm ) Qs m,r,sS ( )
where QF = Qb;. The structural coefficients
aa da. .
Mol Ty b i, =1, .,
Cr.\ [ ax ax] ] s7r t .’ n
da da,. da da,,
o o 04 b+ mQ __ Tlmi b. 1.8*

elaborate expressions (1.8) for the explicit selection of t = x;.

Equations (1.15) together with Eqs (1.14) form a compatible system of k + n first-order differential
equations of motion, each with the same number of unknowns 1y, . . ., N, Xy, . . ., X,,. It is noteworthy
that Eqs (1.15) in redundant coordinates contain no reaction forces of the constraints (1.1) and have
the same outward appearance in both independent coordinates (n = k) and dependent coordinates
(n > k).

Poincaré’s equations (1.15) contain, as special cases, the equations, first given by Poincaré [1] for the
case whenn = k, Xy = d/dt,cy =0,0F =0 (i =s = 1,...,k), the Lagrange equations of the second
kind when n = k, n, = X, X; = d/dx,, when all ¢;; = 0, and the generalized Lagrange equations [19] in
redundant coordinates

dair aL aL*

O 0 s=1, .,k jek+], .., n
@ % o, e, o !

when the constraints are specified in the form x; = bjs X (s = ,kij=k+1,...,n),and also
the generalized Boltzmann [26]-Hamel [27] equations in qua51-coord1nates

ial: =Cm1.t BE_"'C'" aL' a_l"_
dtor, " "om, "ok, on,

+

+Q;, m r, s=1,..., k (1.16)
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where L* = L*(t,xq, . . ., X3 ®yy oy By o o0, ).

Equations (1.16) are a unique form of the Boltzmann equations in the case of dependent coordinates
(after eliminating indefinite coefficients), and the Boltzmann—Hamel equations in the case of indepen-
dent coordinates. In particular, Euler’s equations of motion of a rigid body around a fixed point follow
from Egs (1.16).

Equations (1.15) and (1.4), under certain conditions, admit of certain first integrals.

If

Xo=0/t, cf;=0,XL"=0, Q,=0,is=1,... .k (1.17)

the following energy integral exists

iL_nl—L'=h=C0nSt, i=1 ...,k
i

which, in the general case when L* = L + L} + L§, where L} are homogeneous forms of the variables
7; of degree s (s = 0, 1, 2), take the form L3 - L = h.
Note that conditions (1.17) are satisfied if all a5 = by = 0 in Eqs (1.3) and (1.4), while the coefficients
ag; and b are explicitly independent of time, like the Lagrange function L* (x,, ..., %,, N1, . . ., M)
For the case QF=0(i = 1, ..., k) Chetayev [3, 4] introduced the idea of cyclic displacements X
(o =1+1,...,k), which satisfy the conditions

D [Xe X,1=0,5=0,1, ...,k 2) XcL"=0 (1.18)
When Q% = 0 and conditions (1.18) hold, Eqs (1.15) have the first integrals
aL’ /o, =B, =const, a=1+1, ..., k (1.19)

Using integrals (1.19) Chetayev constructed a generalized Routh function and showed that Poincaré’s
questions take the form of generalized Routh equations [3, 4] for non-cyclic displacements of X (s =
1,...,0).

Comparing conditions (1.17) and (1.18) we see that the operator X = d/dt satisfies conditions (1.18),
i.e. is an operator of cyclic displacements, to which the energy integral corresponds.

Indeed, if we represent Poincaré’s equations in parametric form, when the time ¢ = x; and the
coordinatesx; (i = 1, ..., n) are considered as variables x, (o = 0, 1, . . . , n) that are independent of
one another subject to differential constraints (1.1) and specified by continuous differentiable functions
of a certain parameter 1, x, = X,(t), the energy integral of the Poincaré parametric equations with
Lagrangian [28] L*(x;, 1\s) X, Xo = dt/dt will correspond to the variable x,.

Using the energy integral we can reduce the order of the system of equations by determining from
the integral the variable

X'O =t= ‘p(xl'! Ny, h)

and constructing the Routh function

1 * * aL. aL‘
R(xi9 N h)= L' x} "(L -—1N ]x' =——T],x' 1.20
s 0 ans s |70 aﬂ, 0 ( )

on the right-hand side of which the variable xj is replaced by the function ¢(x;, n;, £). The parametric
Routh equations with t© = ¢ take the form of Poincaré’s equations (1.15) in which all ¢ = 0,

0:=0. |
If we take one of the quantities n,, say ;, as the parameter 1, we can obtain from the energy integr.
q y P 8y

Mm=n=1/=¢xn,. b, r=2,..,k

where 1, = dn/dn, = n,/n,, ¥’ = dt/dr; = 1/n, and, substituting into (1.20), we obtain the new Routh
function
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Rx;, W, b= gni% (1.21)
s N

It is easy to show [25], that the following equalities hold

Z—, —=——, i=L .., nr=2 ..,k

substituting which into (1.16) fors = 2, ..., k and all ¢ = QF = 0, we obtain the generalized Jacobi
[29]-Whittaker [25] equations in quasi-coordinates

d oR' oR’ dR
— =M+, §=2, .., k 1.22
drn, on’, n a, on, 1.22)

If we put 1); = %; in (1.3) (then [26] ¢, = 0), Eqs (1.22) take the form

_i_.ai, = c"'n’ _aR' + a_R,..
dq dm; " eow, om’
As pointed out in Section 1.2, when Eqs (1.3) are integrable the variables , can serve as new defining
coordinates. Then ¢y, = 0 and Egs (1.23) take the form of the Jacobi-Whittaker equations.

Equations (1.23) need to be investigated in the general case together with the constraint equations
(1.4), written in the following form

m,r,s=2 ..k (1.23)

X=bnsi=2,..,ns5s=2,..,k (1.24)

Equations (1.23) and (1.24) can be regarded as the equations of motion of a new dynamical system
with k — 1 degrees of freedom, for which R’ is the kinetic potential, 1, are the parameters of the real
displacements, while x; plays the part of time as an independent variable. The dependence of x; on the
time ¢ is established by quadrature [25].

1.4. The canonical Chetayev equations
Chetayev [3, 4] converted Poincaré’s equations to canonical form by introducing, instead of n, and
L*(t,x,m), new variables y, and function H*(¢, x, y), defined by the equations

oL

s

,s=1, .., k, H'(t,x, y)=yn,-L(t,x, ) (1.25)

Ys =

which yield the following equations

XH =-X,L, n, =2 o=,k (1.26)
¥,

Transformation (1.25) is a Legendre transformation, if we take into account the fact that || *L*/om,om, ||
#20,(r,s=1,...,k). Since
oL _ oL ox, . aL
Y ——-_-—T__=pibi.l’ n:=aijj’ pi=_a-;.-

it is obvious that the following equality holds
H‘(t, x, y) =plbl.laijj—L(t' xv -.x) = H('v xl P)
(the formula a,b;; = §; is taken into aocounf).

Substituting (1.25) and (1.26) into Poincaré’s equations (1.15) yields the canonical Chetayev equations

dy oH" . e oH"®
“};L=CZE)’M+C;}’M.—X,” +st ns=3y':-' m,r,s=1 ..,k (127)
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These equations need to be investigated in the general case together with Eqs (1.4), by means of
which the second group of equations (1.27) can be given another form [4]

H
—'=Xox,-+—sz,-, i=l, cey N (1.28)

Note that, like Eqs (1.15), the first group of equations (1.27) can be derived directly from Eqs (1.14),
rewritten in the form

dp;  oH
e 0. b = =
(dt ax,- QIJb'S O sl b

(equations of the form (1.26) are taken into account).

Chetayev’s equations (1.27) contain the following as special cases.

1. The canonical Hamilton equations, when the variables x; are independent Lagrange coordinates
(n = k), while the group (1.5) is reduced to commutation transformations, where the Lagrange
generalized velocities 1; = x; are taken as the parameters of the real displacements, the variables x;, p;
will be canonical coordinates, while H(t, x, p) is the classical Hamilton function.

2. The generalized Hamilton equations in redundant coordinates [19]

E“.'Xs.:-a_H-_b a_H._+Qs‘, ﬁ:g.l’_'_ s=1, ..., k; j=k+1, ..., n

dt ox, ox f dt oy,

3. The canonical Boltzmann-Hamel equations in quasi-coordinates [19]

d oH' oH" dan oH"
"y_s='cm_ym+ct’1’;ym-_é? L=

" oy, s dt dy,

For Eqs (1.27) with Q, = 0 the generalized Jacobi and Poisson theorems hold [2-4] (the latter under
certain additional conditions).

When X, = 0/dt, ¢y = 0, XoH* = 0,0* =0 (i,s = 1, .. ., k), equivalent to conditions (1.17), Eqs
(1.27) have the encrgy integral

+Q;,

H(X)y <.y Xpy Y1y +-0s Yo) = CONSE

equivalent to the energy integral of Eqgs (1.15).
When the cyclic displacements X, (o =1 + 1, . . ., k) exist under conditions (1.18), Eqgs (1.27) with
Q7% = 0 will allow of the integrals

Ya=Ba=const,a=1+1,...k

similar to integrals (1.19) of Egs (1.15). For non-cyclic displacements X; Eqs (1.27) take the form of
the equations

* * *
f’-ya=c:. oH y, +¢* oH B, +ciB, — X, H*+ 0", n,.=ai (1.29)
e " Y, %, Y,

Lrs=1,...,La=1+1,...,k

equivalent to the generalized Routh equations [3, 4], where H* = H* (t,x1, .. ., X, Y1 -« > V6 B+ 1>
.. > By)- After integrating Eqs (1.29) the variables 1, are defined by the equations 1, = dH*/dB, (o
=l+1,...,k)

Using the energy integral we can reduce Chetayev’s equations by two orders. In fact, suppose the
integral H*(x;, y;) -+ h = 0 is solvable with respect to the variable y;, so that

N+K&xy, X Y Y D=0

Consider the Legendre transformation for Eqs (1.22) and (1.23)
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y.=0R’/om,, K(x, y,, )=y, -R'(x, 0., h), r=2, ..., k
which yields the equations X, K = -X,R’, i, = dK/dy;.

‘Taking these equations into account, Eqs (1.22) can be written in the form of the generalized Whittaker
equations [25]

&y,  w0K , 3K dt _3K dn
—— - - ) [X4) = 2’ ceey k! = 4 = 0 :
dm, rs dy, m orn, o dn, ok’ dnm, (1.30)
and also Egs (1.23)
dy. _ 0K, 9K dt 9K dh
s mOK . K v s=2, ok KA, 131
dr, "y w0t dr, ok’ dx, (131)

The last pairs of equations (1.30) and (1.31) can be separated from the remaining equations since the
first 2(k — 1) equations do not contain ¢, while # = const. Hence, the first 2(k — 1) equations of (1.30)
or (1.31) can be regarded as the equations of motion of the reduced system with k — 1 degrees of freedom
[25].

2. NON-HOLONOMIC SYSTEMS

2.1. Poincaré’s and Chetayev’s equations for non-holonomic systems

Poincaré’s equations, like the Boltzmann-Hamel equations in quasi-coordinates, are used to describe
both holonomic and non-holonomic systems. This problem has already been investigated in [12+15],
as well as in [19], where Chetayev’s equations were also considered in this sense.

We must, however, emphasize, that the system of operators of virtual displacements for non-holonomic
systems is not closed [14, 15}, as a result of which one must use operators of the corresponding holonomic
system, obtained from the non-holonomic system considered by mentally discarding non-integrable
constraints.

When considering non-holonomic systems, and also the Boltzmann—-Hamel equations, the case when
there were no integrable constraints was considered in [19]. Here, we will consider the general case of
a non-holonomic system in redundant coordinates, subject to integrable constraints

nj=a(x)x; = 0, rank (@) =n-k,i=0,1,...,nj=k+1,..,n (2.1)
and non-integrable constraints
Na =agi(X)x; = 0, rank (@) =k -1, =1+1,...,k (22)
We will arbitrarily choose linear differential forms
Ny =a(0%;, s =0,1, ..., l; ag;= 8, (2.3)
independent of one another, and also with forms (2.1) and (2.2), det(a;) # 0(;,j =0,1,...,n). In

particular, we can take the generalized velocities x; as the quantitiesn,, (s = 1,...,!/
Solution of forms (2.1)—(2.3) leads to the equations

xi = bi:(x)nsy l = 0,1, e N, 8= 0,1, seay 1,' b,o= 8,'0 (2.4)

For the corresponding holonomic system, obtained by mentally discarding the non-integrable

constraints (2.2) considered, i.e. assuming g, % 0 (@ =1 + 1, ..., k), instead of (2.4) we obtain the
equations

X =b(xM,, i=0,1,...,ms5=01,....k

and we construct the closed system of operators (1.5).
Since the parameters of the virtual displacements w,, = 0 when the constraints (2.2) are present, from
the d’Alembert-Lagrange principle (1.13) we derive the equations of motion of a non-holonomic system
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of the form (1.15)
dor’ _ , oL , , oL

——=c, — e —+ XL +Q, 1, s=1, ..., I, m=1, ...k 2.5

dt ans s ir anm os anm 5 ) ( )
the number of which is less than the number of equations (1.15) by k& — 1. The structural coefficients
¢y, as previously, are given by formulae (1.18) in which, however, the subscriptsr,s =0, 1, ..., Note

that Eqs (2.5) have the same outward appearance as Eqgs (5.3) [19] in independent coordinates. We
must add the constraint equations (2.4) to Eqs (2.5), as a result of which we obtain a compatible system
of I + n equations of motion with the same number of unknowns xy, . .., x,;, My, ..., N

Note that the function L*(z, x, ), which occurs in Eqgs (2.5), constructed for the corresponding
holonomic system, may, in general, depend on all the parameters n, (r = 1, . . ., k), as a consequence
of which the constraint equations n, = 0 (@ =1 + 1, .. ., k) need only be taken into account after
setting up Eqgs (2.5) (27, 21, 30].

Note that Eqs (2.5), when QF = 0, are equivalent to Eqs (3.14) [12] and (1.13) [13], but are outwardly
somewhat simpler due to the choice of the parameters 1),, which vanish by virtue of the equations of
the non-integrable constraints (2.2).

For the cases when the generalized velocities %, = 1, (s = 0, 1, ..., ) are taken as the parameters
1, (2.3),i.e. whena; = 8; (i = 1, ..., n), all the structural coefficients [26] c;; = 0 for m <, and Eqs
(2.5) take the form

d oL oL . oL .«
Za—&:=cxm—x,+c",';-a—n;—+XsL +Q, r,s=1,.., 1, m=Il+1, ..., k (2.6)
where L* = L*(t, Xy, - -+ s Xy X1y e o5 Xp My« + o » T)-

If in the functions L*(¢, x, n) in Eqs (2.5) we replace the kinetic energy T*(t, x, Ny, . . . , T;) of the
corresponding holonomic system by the kinetic energy O(t, x, 1y, . . . , 1) of the non-holonomic
system with constraints (2.2), Eqgs (2.5) take the form of Eqgs (5.5) [19]

d 398 20

=== (M, + Cg5)

ar ans aﬂ,;. rs'ir

m, r, s=1,.., I, p=l+1, ..., k

where (9T*/0n,) denote the expressions 07*/dn, withn, =0 (p,s =1+ 1,...,k).
Using the Legendre transformation (1.25) of Eq. (2.5), the motions of the non-holonomic system
can be written in the form of Chetayev’s canonical equations

+(c? +c},”s)£aT ]+X3(9+U)+Q;

on, @7

d oH" . oH"’
7};{':6;‘ 3 ym"'c:.’s')'m _XsH +Qs’ Ns =a_
Yr Vs (2.8)
r,s=1, ..., 5 m=1 .. k
to which we must add the constraint equations (2.2) and relations (2.4), rewritten in the form
M _o, a=i+l, ..., k; i‘-”i=b,.j-ai, i=1, ..., m j=0,1, ..., 1 (2.9)
0y, dt ay;

Equations (2.8) and (2.9) form a complete system of n + k + 1 equations with the same number of
unknowns xy, . . . , X%, ¥4, - - « » Yk N1s - - - » Ti- Equations (2.8) and (2.9) with n = & take the form of Eqs
(7.17)~(7.19) of [30].

The canonical equations of motion of non-holonomic systems, equivalent to Eqs (2.7), have the form

d oH"* oH" oT* .
%=(C‘7;E+C§J)’m +(c,’;—é-;+cfs)(anp)—X,H +0,

Ny =0H"/dy,, m, r, s=1,....I; p=i+1, ..., k

(2.10)

where H* =y, -6 -U.
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2.2. The equivalence of Poincaré’s and Chetayev’s equations to different forms of the equations of motion

Previously [12-14] it was shown by direct calculations that Poincaré’s equations of motion of non-
holonomic systems are equivalent to Chaplygin’s, Appell’s, Hamel’s, Volterra’s, Ferrers’ and certain
other equations. The equivalence of the equations in quasi-coordinates to Appell’s equations, and also
to Chaplygin’s equations was proved in [30] by deriving these groups of equations from the
d’Alembert-Lagrange principle. The Voronets equations were derived from Poincaré’s equations (5.6)
in [19].

We will show that Poincaré’s equations are equivalent to certain other forms of equations of motion
of non-holonomic systems.

In Section 1.3 Poincaré’s equations were derived from Maggi’s equations [24] (1.14). Similarly, Eqs
(2.5) are equivalent to Eqgs (1.14) when (2.2) is taken into account.

As Maggi showed [24], both Appell’s equations and Volterra’s equations follow from his equations.

Maggi considered a mechanical system with coordinates x; (i = 1, . . ., n) subject to m linear constraints, which
can be both holonomic and non-holonomic, and explicitly dependent or independent of time. By solving the
constraint equations for x;, he presented them in the form (2.4), referring to the quantities n; (in his notation—
e,) as the characteristics of the motion of the system considered, where b = d&;/on; = ox/m (s =1,...,l=n
- m). Proceeding to the derivation of Volterra’s equations, Maggi converted his equations of the form (1.14) (in
which the kinetic energy T occurs instead of L, while Q denotes all the active forces applied to the system) to the
form

40T _db, aT aT

T, ar o oy Y rebn L E=0b, (2.11)

Volterra [31] considered a system with N point masses, the velocities of which in a Cartesian system of coordinates
are related to the characteristics of the motion by relations of the form (2.4)

x,'=b,'_'n,,i= 1, seey 3N,S= l, ...,l

where b;; = b;(xy, . . . , x3y). Here Maggi’s equations (2.11) take the form of Volterra’s equations [31]
d aT _
Ea“—_c( )nknr+1)rr kv r, s=19 veey 1 (2.12)

db .o
[C(k)_mb:k - r ooobi mi=my =mg; i, j=1, 3N}

where T(xy, . .., x5y, M, - . ., ) is the kinetic energy.

Without giving Maggi’s derivation of Appell’s equations from Eqs (1.14) here we note that they are simpler to
derive directly from Eq. (1.12). Differentiating Eqs (2.4) with respect to time we have X; = b (x)n; + . . ., where
the dots denote terms not containing 1,. Hence we find that dx;/on, = b, as a result of which, from (1.12), we
obtain Appell’s equations

aS/on, =I1,, s=1, ..., | (2.13)
where S = m,i2/2 is the energy of the accelerations and I1, = F, - by, is the generalized force referred to the quasi-
coordinate 7 [30].

We will show, finally, that Kane’s equations are equivalent to Poincaré’s equations. By (1.6) ér, = o Xr, (v =
., N,s = 1,...,]). Substituting these expressions into (1.12) we obtain the equations of motion in the form
my, - X;r,=F, - Xr, s=1, ..., | (2.14)

For a system with Lagrangian coordinates g; subject to non-integrable constraints

qj=bj,(t,q)q,+b,(t,q),j=l+ ,...,n,8=1,..,1

and operators (1.5) of the form

of of
Xf=l+p, L
aqs y aqj

Eqgs (2.14) are identical with Kane’s equations [32, Eqs (19)]
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K, +K =0, s=1, ..., |

which, consequently, are equivalent to Egs (2.5).
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