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It is shown that the generalized Poincar6 and Chetayev equations, which represent the equations of motion of mechanical systems 
using a certain closed ~.¢stem of infinitesimal linear operators, are related to the fundamental equations of analytical dynamics. 
Equations are derived i~ quasi-coordinates for the case of redundant variables; it is shown that when an energy integral exists 
the operator X0 = ~ t  satisfies the Chetayev cyclic-displacement conditions. Using the energy integral the order of the system 
of equations of motion is reduced, and generalized Jacobi-Whittaker equations are derived from the Chetayev equations. It is 
shown that the Poinear,5--Chetayev equations are equivalent to a number of equations of motion of non-holonomic systems, in 
particular, the Maggi, Volterra, Kane, and so on, equations. On the basis of these, and also of other previously obtained results, 
the Poincar6 and Chetayev equations in redundant variables, applicable both to holonomic and non-holonomic systems, can be 
regarded as general equ ations of classical dynamics, equivalent to the well-known fundamental forms of the equations of motion, 
a number of which follow as special cases from the Poinear6 and Chetayev equations. © 1997 Elsevier Science Ltd. All rights 
reserved. 

Poincar6's remarl~lble idea [1] and Chetayev's fine theory [2-4] on the application of Lie groups to 
represent the equations of motion of holonomic systems have been developed in a number of papers 
[5-201. 

Thus, equations in variations for Poincar6's equations have been obtained and the existence of a 
principal invariant for the latter equations has been investigated in [5, 6]. The equations of motion of 
a system with an infinite number of degrees of freedom--a rigid body with a cavity containing a liquid, 
have been derived in the form of Poincar6 and Chetayev equations [7]. One of the methods of 
constructing groups of possible displacements has been described in [8]. An extension and an application 
of the Chetayev cyclic displacements have been given and, in particular, an extension of Chaplygin's 
area theorem has been obtained, and some theorems of the interaction between the parts of a system 
have been established [9-11]. 

In a number of papers [12-14], Poincar6's equations were applied for the first time to non-holonomic 
systems, for which the system of operators of virtual displacements, as was shown, is not dosed, whereas 
it is for holonomic systems. Poincar6's equations were derived by several methods for non-holonomic 
systems and it was shown that they are equivalent to many well-known equations, such as Appell's, 
Hamel's, Volterra's, Chaplygin's, Ferrers' and other equations. 

In a number of papers [15-18], by means of a non-linear reversible replacement of the momenta, 
the Hamiltonian of the system was reduced to a form close to the Poincar6-Chetayev system. The con- 
sequences were a theorem on complete integrability, integrability on integral manifolds, and on classes 
of equivalence of Hamilton systems. A new method of obtaining particular solutions from familiar first 
integrals was proposed. For the case when the kinetic energy is independent of the coordinates, the 
conditions for a complete set of linear integrals to exist were established, and quadratures for these 
were obtained. By introducing redundant Poincar6 parameters, equations of motion of non-holonomic 
systems were obtained for the case of stationary constraints, and expressions were derived for the 
reactions of the latter. Equations of the hydrodynamic type, and so on were obtained from the 
Poincar6--Chetayev equations. 

It was proved in [19, 20] that the canonical Chetayev equations are the Hamilton equations in non- 
canonical variables. It was shown that the Lagrange and Hamilton systems of generalized equations in 
redundant coordin~ates, and also the equations in quasi-coordinates, are special cases of the 
Poincar6-Chetayev equations, the theory of which was thereby extended to these systems of equations. 
The equations of motion of non-holonomic systems were also derived in the form of Poincar6 equations, 
which are outwardly different, but are equivalent to the equations derived in [12-14], and in the form 
of Chetayev equations. 
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1. H O L O N O M I C  S Y S T E M S  

1.1. Defining coordinates, parametrization o f  the constraints 
Consider a mechanical hoIonomic system with k degrees of freedom. The system position in space 

at any instant of time t is given by the governing coordinates [4] xi (i = 1 , . . . ,  n i> k), r~ = r~ (t, x l , . .  
• , Xn) (~ = 1 . . . .  , N), where rv is the radius vector of a mass point of mass m~. When n = k the variables 
xi are independent Lagrange coordinates, and when n > k they are dependent, or redundant coordinates, 
subject to constraints, specified by the integrable system of differential equations 

l~ j  ~ -  aft (t, X I . . . . .  In) Xi + aft) (t, xl . . . . .  x,,) = O, j = k + 1 . . . . .  n 

rank (aji) = n-k,  Jci = dri/dt. 

Everywhere summation is carried out over repeated subscripts. 
The introduction of redundant coordinates is useful in some cases in order to simplify the expressions 

for the kinematic and dynamic quantities [21]. 
For symmetry and brevity we will conventionally put t = x0 

r l j E a j i ( x ~ i = O , i = O ,  1 . . . .  n , j = k  + l . . . . .  n 

where x = (x0, xl, • • •, xn). 
The sufficient conditions for Eqs (1.1) to be integrable, as is well known [22], have the form 

(1.1) 

OaJ r = Oajs r, s=0 ,1  . . . . .  n; j = k + l  . . . . .  n (1.2) 
Oxs Ox, ' 

We will complete (1.1) by the arbitrarily chosen linear forms 

"qs = asi(X)J q, s = O, 1 . . . . .  k, i = 0,1 ..... n, 110 = 1, a0i = 80t (1.3) 

which are linearly independent both of one another and in relation to the forms (1.1), so that det (a#) 
0 ( i , j  = O, 1 , . . . ,  n) ,  where ~)ij is the Kronecker delta. 
Solving Eqs (1.1) and (1.3) for Xi, we obtain the parametric representation of the constraints 

)q = bis(x)TL, s = 0,1 ..... k, i = 0,1 . . . . . .  n, b0~ -- ~ (1.4) 

where asibi~ = airbsi = ks,. 

1.2. System o f  operators, Poincard parameters 
Parametrization (1.4) enables us to construct a dosed system of infinitesimal linear operators 

X s f  =-bis ~x  i ,  s=0 ,1  . . . . .  

defining the virtual and real displacements of the system 

k, f ( x )  ~. C 2 (1.5) 

8f  = tOrX~f, r=  1 . . . . . .  k, d f  = rlsXtfdt, s = O,1 . . . . . .  k (1.6) 

respectively, where tot -- a,i(x)&q (i = 1 . . . . .  n; r = 1 . . . .  , k )  and % are the parameters of the virtual 
and real displacements, introduced by Poincar6 [1]. 

The system of operators (1.5) is a dosed system in the sense that its commutator (the Poisson bracket) 
has the form 

[Xr, X s ~ -  X, Xr f  - X~Xrf = crsmxmf, m, r, s = 0,1 . . . . . .  k (1.7) 

where the structural coefficients 

m = ( ~ a m j  O ~ i )  ( Objs - Obir~ 
Crs ~ Ox i b i sb j r=ara j[b i r ' -~x i -b i s '~x i ) ,  i, j = 0 , 1  . . . . .  n (1.8) 
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where ~ -- -c~,,m c~ = 0 (m, r, s = 0, 1 . . . .  , k). The commutator is bilinear, skew-symmetric and satisfies 
the Jacobi identity; in turn it is first-order differential operator [4, 23]. 

By an appropriate choice of the auxiliary forms (1.3) we can reduce the dosed system (1.5) to the 
Lie group, when aJll cm~ = const [4]. That very case was considered by Poincar6 and by Chetayev. However, 
in the general case of the dosed system (1.5), the coefficients c m will, generally speaking, be variable, 
and this case is not excluded further from consideration. 

Note that if the forms (1.3) are integrable, like forms (1.1), conditions (1.2) are also satisfied for j  = 
1 . . . .  , k, and functions of the form rq = Its(x ) then exist which can serve as new defining coordinates, 
and besides rl~ = its (s = 1 . . . .  , k), and also 

07¢ s ~1~ s OX i Oki = bis 
OX i = OjCi -~ asi , Olts = ~l~s 

In this case, the system of operators (1.5) is an Abelian group of the functions 

Of Of s=O,1,  k; i = 0,1, n 
Xs f -- bis OX-"-" i = ~ t  s . . . . . . . . .  

for which all the coefficients c m = 0 (m, r, s = 0, 1 . . . .  , k). 
If the forms (1.3) are not integrable, the quantities Its(x) as functions of time and the coordinates do 

not exist, but the symbols rc~ are reasonably introduced into consideration under the name of quasi- 
coordinates, using the conventional notation for the quasi-velocities ~ = g~ and the differentials of the 
quasi-coordinates dn~ = rl~dt, and also for the "partial derivatives with respect to the quasi-coordinates" 
and for the inverse relations [21] 

Of =bis Of O f  =asi__~s, i=0,1  . . . . .  n; s=O,1 . . . . .  k (1.9) 
ign, Ox i ' Ox i 

By (1.9) the operators (1.5) in this case can be represented in the form 

X s f = O f / O n s ,  s=0.1  . . . . .  k (1.10) 

with commutator (1.7), which takes the form 

[Xr, Xs]f=_ 0 2 f  02 f  Of 
O~r~'l[ $ ~l[sl~l[ r "~ crms ~lCm 

where, in general, c m # 0. 
The parameter,; rli and to i are linked by the following relations 

do~/dt - 5rli = cirlr%, i, r, s = O, 1 . . . . .  k (1.11) 

initially established by Poincar6 for the case when cios = O. 
Note that expression (1.11) is equivalent to that for the external derivative of the form ~ = ay~y. 

Expressions for the coefficients C/rs are more easily obtained from relations (1.11) than by using the 
general formulae (1.8) [21]. 

1.3. Poincar('  s equations 
Poincar6 [1] and Chetayev [2, 3] used the Hamilton principle to derive the equations, while Chetayev 

[4] also used the d'Alembert-Lagrange principle in the traditional form 

(mvi;v-Fv).Srv =0, v =1 . . . . .  N (1.12) 

We will use the d'Alembert-Lagrange principle in the defining coordinates [4] 

d OL OL ) 
dt Ok i Ox i Qi 8xi =0, i=1  . . . . .  n (1.13) 
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when L(t, x, Yc) = T(t, x, Yc) + U(t, x) is the Lagrange function,_ , n  T(t, x, ~). is the kinetic" energy, U(t, x) 
is the force function, x = (Xl, • • • ,xn),x = (Xl, • • • ,x~), Qi - Fv "Orv/~Ci IS the generalized non,potential 
force. 

By (1.5) and (1.6) we have 

t~O¢ i = o~sXsxi = 03sbis, i = 1 . . . . .  n; s = 1 . . . . .  k 

as a consequence of which, by virtue of the arbitrariness of cos, Maggi's equations of motion [24] follow 
from (1.13), namely 

d 3L 3L ) 
Oxi i)xi Qi bi, =0, s = l  . . . . .  k (1.14) 

Using (1.4) we can express the Lagrange function in the form of the equality L*(t,  x, I]) = L(t, x, Jc), 
by differentiating which and using (1.3) we obtain the relations [25] 

OL Off OL 3L" . OL* ( 3am) ~. - + Oamo ], 
~ =  = " l ' - - I - - V j r q r  i, j = O , l  . . . . .  n 
Ok i i)~,, ami' Ox i 3x i Oqm ~. Ox i Ox i ) 

d OL d ( aL* ~a 01~ ( Oami. aa~ 1, + ~ l ~ O j r ' q r +  r=0 ,1  . . . . .  k = ~ - -  mi Of ) at i)k i at ~. Orlm ) Orlm ~, Oxj 

substitution of which into (1.14) leads to Poincar6's equations 

d ~L* m ~L* m 0L* .. 
= C r s ' ~ m ] ] r + C O s - - + X s l .  +Q~, m, r, s 1 . . . . .  k 

dt ~l L ~q m 

where Q* = Q/b/~. The structural coefficients 

(1.15) 

= (  ~amj Oami Ibisbjr, i, j =  1 c: t. axi axj ) 
n 

E/ / Oamo 7, m ~amj Oami bj ° + _ _  
Cos = 3x i Oxj ~x i at ] ,s 

(1.8") 

elaborate expressions (1.8) for the explicit selection of t = x0. 
Equations (1.15) together with Eqs (1.14) form a compatible system of k + n first-order differential 

equations of motion, each with the same number of unknowns r h , . . . ,  rlk, Xl . . . . .  xn. It is noteworthy 
that Eqs (1.15) in redundant coordinates contain no reaction forces of the constraints (1.1) and have 
the same outward appearance in both independent coordinates (n = k) and dependent coordinates 
(n > k ) .  

Poincar6's equations (1.15) contain, as special cases, the equations, first given by Poincar6 [1] for the 
case when n = k ,  X 0 = O/Ot, c ~  = O, Q *  = 0 (i = s = 1 , . . . ,  k) ,  the Lagrange equations of the second 

m kind when n = k, "qs = as, Xs = O/~xs, when all c,~ = 0, and the generalized Lagrange equations [19] in 
redundant coordinates 

d~L"  ~L" . 0L" 
s = l  . . . . .  k; j = k + l  . . . . .  . 

dt Ok s Oxs 

when the constraints are specified in the form£, = bjsYCs (s = 0, 1, , k ; j  = k + 1, n), and also 
• , 1 . " . . . . .  ' 

the generahzed Boltzmann [26]-Hamel [27] equations in quasi-coordinates 

d 0L" m. ~L" m OL" OL" _, 
= C r s ~ r ~ + C o s ~ + ~ + ~ d s ,  m, r, s = l ,  .. k 

dt Oit s ~ic m 0~ On s "' 
(1.16) 
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where L* - L*(t,  x l , . . .  ,Xn; gl,""",  gl,""",  ~)" 
Equations (1.16) are a unique form of the Boltzmarm equations in the case of dependent coordinates 

(after eliminating indefinite coefficients), and the Boltzmann-Hamel equations in the case of indepen- 
dent coordinates. In particular, Euler's equations of motion of a rigid body around a fixed point follow 
from Eqs (1.16). 

Equations (1.15) and (1.4), under certain conditions, admit of certain first integrals. 
If 

Xo=c)R)t, cgi =0, XoL'=O, Qs '=O, i , s=  1 . . . . .  k (1.17) 

the following energy integral exists 

~L" o~q ~l-L'=h=const, i=1 . . . . .  k 

which, in the general case when L* = L ~ + L ~ + L ~, where L* are homogeneous forms of the variables 
rh of degree s (s =: 0, 1, 2), take the form L~ - L~ = h. 

Note that conditions (1.17) are satisfied flail as0 = b/0 = 0 in Eqs (1.3) and (1.4), while the coefficients 
aa and bi~ are explicitly independent of time, like the Lagrange function L* (Xl , . . . ,  x,, Th . . . .  , rlk). 

For the ease Q]' = 0 (i = 1 , . . . ,  k) Chetayev [3, 4] introduced the idea of cyclic displacements Xa 
(cx = l + 1 , . . . ,  k), which satisfy the conditions 

l)[X=,X,]=O,s=O,l, .... k, 2)xj,'=0 (1.18) 

When Q* = 0 and conditions (1.18) hold, Eqs (1.15) have the first integrals 

~L* I~I,, =13~t ffi const, (x=l+l ..... k (1.19) 

Using integrals (1..19) Chetayev constructed a generalized Routh function and showed that Poincarr's 
questions take the form of generalized Routh equations [3, 4] for non-cyclic displacements ofXs (s = 
1,. .... l). 

Comparing conditions (1.17) and (1.18) we see that the operatorX0 = 3/3t satisfies conditions (1.18), 
i.e. is an operator of cyclic displacements, to which the energy integral corresponds. 

Indeed, if we represent Poincarr's equations in parametric form, when the time t --- x0 and the 
coordinatesxi ( /=  1 , . . . ,  n) are considered as variablesxa (cx = 0, 1 , . . . ,  n) that are independent of 
one another subject to differential constraints (1.1) and specified by continuous differentiable functions 
of a certain parameter x, xa = xa(x), the energy integral of the Poinear6 parametric equations with 
Lagrangian [28] L*(xi, "qs) X'o, x'o = dtldx will correspond to the variable x0. 

Using the energy integral we can reduce the order of the system of equations by determining from 
the integral the variable 

x'o= t'= ~x~, rl,, h) 

and constructing the Routh function 

~t: ~ ,  ~C , (1.20) R(xi, rl,, h)fL'x 6- L*-'~s~s)Xof~srlsx o 

on the right-hand :side of which the variable x~ is replaced by the function ~xi,  Tis, h). The parametric 
Routh equations with x = t take the form of Poincarr's equations (1.15) in which all c~ = 0, 
Q* = 0. 

If we take one of the quantities ns, say xl, as the parameter x, we can obtain from the energy integral 

~1----~1 = 1/t'=O(xi, rlr, h) , r=  2 ... . .  k 

where fir = dx,/dn:l = rl,/'ql, t" = dt/dxl = 1hh and, substituting into (1.20), we obtain the new Routh 
function 
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a l  • 

R'(x i, rlr, h)= 

It is easy to show [25], that the following equalities hold 

DR' DL* DR" 1 DL* 
i = l  . . . . .  n; r = 2  . . . . .  k 

(1.21) 

substituting which into (1.16) for s = 2 , . . . ,  k and all c~s = Q* = 0, we obtain the generalized Jacobi 
[29]-Whittaker [25] equations in quasi-coordinates 

d DR~ m , DR' DR 
= C,,~r ~ + ~, S = 2, k (1.22) 

a n .  .... 

1 0), Eqs (1.22) take the form If we put 'ql ----  "¢1 in (1.3) (then [26] c,~ = 

d DR' m , DR' DR' 
=Crsllr:":-. +:--:'., m, r, s = 2  . . . . .  k (1.23) 

dx I d~'. On; 

As pointed out in Section 1.2, when Eqs (1.3) are integrable the variables % can serve as new defining 
coordinates. Then c m = 0 and Eqs (1.23) take the form of the Jacobi-Whittaker equations. 

Equations (1.23) need to be investigated in the general case together with the constraint equations 
(1.4), written in the following form 

x '=  bisll's,i = 2 . . . . .  n; s = 2 . . . . .  k (1.24) 

Equations (1.23) and (1.24) can be regarded as the equations of motion of a new dynamical system 
with k - 1 degrees of freedom, for which R'  is the kinetic potential, 11, are the parameters of the real 
displacements, whilexl plays the part of time as an independent variable. The dependence of xl on the 
time t is established by quadrature [25]. 

1.4. The canonical Chetayev equations 
Chetayev [3, 4] converted Poincar6's equations to canonical form by introducing, instead of ~ and 

L*(t ,  x, rl), new variables ys and function H*(t, x, y), defined by the equations 

aL" 
ys=7---, s=l ..... k, H*(t.x, y)=y, rls-L*(t,x, 11) (1.25) 

oq, 

which yield the following equations 

D H  ° 
XsH* = - X s l ~ ,  11s = - - ~ ,  s = l  . . . . .  k (1.26) 

Transformation (1.25) is a Legendre transformation, if we take into account the fact that II 02L*/Oq,i~ II 
0, (r, s = 1 . . . . .  k). Since 

DL 
= DL" DL D5¢ i = pib~,, rl, = asjkj, Pi = D~ i 

Ys OTl = Di---~ arl, 

it is obvious that the following equality holds 

H*(t, x, y) = pibisasj)c j -  L(t, x, )c) = H(t, x,  p) 

(the formula asp~ = 5i is taken into account). 
Substituting (1.25) and (1.26) into Poincar6's equations (1.15) yields the canonical Chetayev equations 

dy, . ~H" X.H" + fl;, an" =Crs~Yrn+Comsym.  "qs= ' -~s ,  m, r, s = l  . . . . .  k (1.27) 
dt Oy r 
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These equations need to be investigated in the general case together with Eqs (1.4), by means of 
which the second group of equations (1.27) can be given another form [4] 

dx i = Xoxi + OH* 
"~ t  w X s x i ,  i=1 . . . . .  n (1.28) 

Note that, like Eqs (1.15), the first group of equations (1.27) can be derived directly from Eqs (1.14), 
rewritten in the form 

( dpi OH "] 
~ + - - -  ) 1, k \ | a t  Ox i Qi bis=O' s=  .... 

(equations of the :form (1.26) are taken into account). 
Chetayev's equations (1.27) contain the following as special cases. 
1. The canonical Hamilton equations, when the variables xi are independent Lagrange coordinates 

(n = k), while the group (1.5) is reduced to commutation transformations, where the Lagrange 
generalized velocities "qi = J~i are taken as the parameters of the real displacements, the variables xi, Pi 
will be canonical coordinates, while H(t, x, p )  is the classical Hamilton function. 

2. The generalized Hamilton equations in redundant coordinates [19] 

dy s OH* , t)H* _, dx s OH* 
~ - =  ojs _-----+{Js, = , s = l  . . . . .  k; j = k + l  . . . . .  n 
dt Ox s Ox ) dt Oy s 

3. The canonical Boltzmann-Hamel equations in quasi-coordinates [19] 

dys m OH* OH*__ + Qj dn s = OH* 
='C's "~"" Ym + C°msYm -- OnS dt Oy s dt oy r 

For Eqs (1.27) with Qs = 0 the generalized Jacobi and Poisson theorems hold [2--4] (the latter under 
certain additional conditions). 

When X0 = O/Ot, ~ = O, Xo H* = O, Q* = 0 (i, s = 1 , . . . ,  k), equivalent to conditions (1.17), Eqs 
(1.27) have the energy integral 

H*(xl . . . . .  x,, Yl . . . . .  Yt) = const 

equivalent to the e, nergy integral of Eqs (1.15). 
When the cyclic displacements Xa (a = l + 1 . . . . .  k) exist under conditions (1.18), Eqs (1.27) with 

Q* = 0 will allow of the integrals 

y, = [oa = const, t, = i + 1 .. . . .  k 

similar to integrals (1.19) of Eqs (1.15). For non-cyclic displacements Xi Eqs (1.27) take the form of 
the equations 

OH * `̀  OH * [3 , ,  `` ~ ) H *  ~'tY~ : c : - - y ,  +c, +co,[3~ - X , H * + Q * ,  11, - 
at b y ,  byr by' 

(1.29) 

i , r , s = l  . . . .  , l ; o ~ = l + l , . . . , k  

equivalent to the generalized Routh equations [3, 4], where H* = H* (t, x1, . . . ,  Xn, Yl . . . .  , Yl, [31 ÷ l, 
• • •, [3k)" After integrating Eqs (1.29) the variables rio are defined by the equations rh = OH*/O~a (a  
= 1 +  1 , . . . , k ) .  

Using the energy integral we can reduce Chetayev's equations by two orders. In fact, suppose the 
integral H*(xi, Ys) + h = 0 is solvable with respect to the variable Yl, so that 

Yl + K(xl . . . . .  xn, Y2 . . . . .  Yt, h) = 0 

Consider the Legendre transformation for Eqs (1.22) and (1.23) 
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t • • • 

Y'r = O R ' I O q ; ,  K ( x ,  Yr, h ) = y r ~ , - R ' ( x ,  "qs, h), r = 2  . . . . .  k 

which yields the equations X r K  = - X r R ' ,  fir = OK/Oyr. 
Taking these equations into account, Eqs (1.22) can be written in the form of the generalized Whittaker 

equations [25] 

dy" s ,. OK , OK OK dh 0 (1.30) = Crs ~ Yra r, 2, k, dt 
d• I Oy, - Og~' m, s = . . . .  "-drq = Oh ' --die I = 

and also Eqs (1.23) 

dYs  = ra O K  , O K  dt OK dh = 0 (1.31) 
dXl Crs~y,ry  m ~tCs, m, r, s = 2  . . . . .  k, dxl = /)h' dx'-~- 

The last pairs of equations (1.30) and (1.31) can be separated from the remaining equations since the 
first 2(k - 1) equations do not contain t, while h =cons t .  Hence, the first 2(k - 1) equations of (1.30) 
or (1.31) can be regarded as the equations of motion of the reduced system with k -  1 degrees of freedom 
[251. 

2. N O N - H O L O N O M I C  S Y S T E M S  

2.1. Poincard'  s and  Che tayev '  s equat ions  f o r  n o n - h o l o n o m i c  sys tems  
Poincar6's equations, like the Boltzmann-Hamel equations in quasi-coordinates, are used to describe 

both holonomic and non-holonomic systems. This problem has already been investigated in [12-'15], 
as well as in [19], where Chetayev's equations were also considered in this sense. 

We must, however, emphasize, that the system of operators of virtual displacements for non-holonomic 
systems is not closed [14, 15], as a result of which one must use operators of the corresponding holonomic 
system, obtained from the non-holonomic system considered by mentally discarding non-integrable 
constraints. 

When considering non-holonomic systems, and also the Boltzmann-Hamel equations, the case when 
there were no integrable constraints was considered in [19]. Here, we will consider the general case of 
a non-holonomic system in redundant coordinates, subject to integrable constraints 

rlj =-- aji(x))q = 0, rank (aij) = n - k, i = 0,1 . . . . .  n; j = k + 1 . . . . .  n (2.1) 

and non-integrable constraints 

"qtx =- aod(X)'Xi = O, rank (aai) = k - 1, ot = 1 + 1 . . . . .  k (2.2) 

We will arbitrarily choose linear differential forms 

"qs = asi(X)Ygi, S - -  0,1 . . . . .  l; a o i =  5oi (2.3) 

independent of one another, and also with forms (2.1) and (2.2), det(aij) # 0 ( i , j  = 0, 1 , . . . ,  n). In 
particular, we can take the generalized velocities Xs as the quantities rls, (s = 1 , . . . ,  1). 

Solution of forms (2.1)-(2.3) leads to the equations 

)ci = bis(x)rls, i = 0,1 . . . . .  n, s = 0,1 . . . . .  l; b ~ =  8io (2.4) 

For the corresponding holonomic system, obtained by mentally discarding the non-integrable 
constraints (2.2) considered, i.e. assuming lla ~ 0 (a = l + 1 . . . .  , k), instead of (2.4) we obtain the 
equations 

xi = bis(x)~s, i = 0,1 . . . . .  n; s = 0,1 . . . . .  k 

and we construct the closed system of operators (1.5). 
Since the parameters of the virtual displacements t% = 0 when the constraints (2.2) are present, from 

the d'Alembert-Lagrange principle (1.13) we derive the equations of motion of a non-holonomic system 
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of the form (1.15) 

d 0L*_ m 0L +c '  n DE' . 
--~dt Oils -Crs i l r~qr  n o s ~ +  +Q~, r, s = l ,  ..., l; m = l  . . . . .  k (2.5) 

the number of which is less than the number of equations (1.15) by k - 1. The structural coefficients 
c,~, as previously, are given by formulae (1.18) in which, however, the subscripts r, s = 0, 1 , . . . ,  l. Note 
that Eqs (2.5) have the same outward appearance as Eqs (5.3) [19] in independent coordinates. We 
must add the cons~traint equations (2.4) to Eqs (2.5), as a result of which we obtain a compatible system 
of I + n equations of motion with the same number of unknowns Xl, • • •, xn, Ill . . . .  , Ilt. 

Note that the function L*(t ,  x, II), which occurs in Eqs (2.5), constructed for the corresponding 
holonomic system, may, in general, depend on all the parameters Ilr (r = 1 . . . .  , k), as a consequence 
of which the conslLraint equations Ila = 0 (o~ = l + 1 . . . . .  k) need only be taken into account after 
setting up Eqs (2.5) [27, 21, 30]. 

Note that Eqs (2.5), when Q* = 0, are equivalent to Eqs (3.14) [12] and (1.13) [13], but are outwardly 
somewhat simpler due to the choice of the parameters Ila, which vanish by virtue of the equations of 
the non-integrable, constraints (2.2). 

For the cases when the generalized velocities ~s = rls (s = 0, 1 , . . . ,  I) are taken as the parameters 
Ils (2.3), i.e. when as /=  lisi (i = 1, . . . ,  n), all the structural coefficients [26] c~ = 0 for m ~ l, and Eqs 
(2.5) take the form 

d 0£' ~ OL".  0L* 
dtOJcs=crs~cq~Xr@Coms~-----@SsL*@Q o~m T M  r, s = l  . . . . .  l, m = l + l  . . . . .  k (2.6) 

where L* = L*(t, : q , . . . ,  Xn, Yq, • • . ,  £l, I l l + l ,  • • • , I l k ) .  

If in the functions L*(t ,  x, Il) in Eqs (2.5) we replace the kinetic energy T*(t,  x, Ill, . . . ,  Ilk) of the 
corresponding holonomic system by the kinetic energy O(t, x, Ill . . . .  , Ill) of the non-holonomic 
system with constraints (2.2), Eqs (2.5) take the form of Eqs (5.5) [19] 

d 2 0  m m 2 0  . p 0T* 
dt ~qs =(C'silr +c°s ) '~m+(C ' s i l r  + C's)(~---pp ) + Xs(O+ U)+Q~ (2.7) 

m, r, s = l  . . . . .  l; p = l + l  . . . . .  k 

where (0T*/0ilp) denote the expressions OT*/Oqp with Ils = 0 (p, s = 1 + 1 . . . .  , k). 
Using the Legendre transformation (1.25) o f  Eq. (2.5), the motions of the non-holonomic system 

can be written in tlae form of Chetayev's canonical equations 

dYs _ m OH* m m Y H* + O* OH* 
di .... Crs Y + CosYm -- Ils = Oy r - -s-- ,~s , Ors 

r, s = l  . . . . .  1; m = l  . . . . .  k 
(2.8) 

to which we must add the constraint equations (2.2) and relations (2.4), rewritten in the form 

OH* dx i 0H.....* i = 1 . . . . .  n; j = 0,1 . . . . .  l (2.9) -~y?=0 ,  ~--1+1 . . . . .  k; - ~ = b i j  Oyj ' 

Equations (2.8) and (2.9) form a complete system of n + k + 1 equations with the same number of 
unknowns x l , . . .  ,x,,,yl, • • • ,Yk, I l l , - . . ,  Ill. Equations (2.8) and (2.9) with n = k take the form of Eqs 
(7.17)-(7.19) of [3(}]. 

The canonical equations of motion of non-holonomic systems, equivalent to Eqs (2.7), have the form 

d y s = ( c m O H *  = )  (OH*p__ p )(OT*)__ _ . 
dt ~ rS Oy r +cos Ym + C,s -, +Cos ",-- XsH +Qs 

J ~" °Yr J~tlllPJ (2.10) 

I l s=OH*/Oys ,  ra, r, s = l  ..... l; p = l + l  . . . . .  k 

where H* = Ysils - 9 - U. 
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2.2. The equivalence  o f  Poincard's  a n d  Chetayev 's  equat ions  to dif ferent f o r m s  o f  the  equat ions  o f  mo t ion  
Previously [12-14] it was shown by direct calculations that Poincar6's equations of motion of non- 

holonomic systems are equivalent to Chaplygin's, Appell's, Hamel's, Volterra's, Ferrers'  and certain 
other equations. The equivalence of the equations in quasi-coordinates to Appell's equations, and also 
to Chaplygin's equations was proved in [30] by deriving these groups of  equations from the 
d 'Alembert-Lagrange principle. The Voronets equations were derived from Poincar6's equations (5.6) 
in [19]. 

We will show that Poincar6's equations are equivalent to certain other forms of equations of motion 
of non-holonomic systems. 

In Section 1.3 Poincar6's equations were derived from Maggi's equations [24] (1.14). Similarly, Eqs 
(2.5) are equivalent to Eqs (1.14) when (2.2) is taken into account. 

As Maggi showed [24], both Appell's equations and Volterra's equations follow from his equations. 

Maggi considered a mechanical system with coordinates xi (i = 1 . . . . .  n) subject to m linear constraints, which 
can be both holonomic and non-holonomic, and explicitly dependent or independent of time. By solving the 
constraint equations for ~i, he presented them in the form (2.4), referring to the quantities ~ (in his notation-- 
es) as the characteristics of the motion of the system considered, where b/s = ~ifdrls = O~i/~gils (s = 1 . . . . .  l = n 
- m). Proceeding to the derivation of Volterra's equations, Maggi converted his equations of the form (1.14) (in 
which the kinetic energy T occurs instead of L, while Q denotes all the active forces applied to the system) to the 
form 

d ~T dbi, ~T ~T 
dt Orl, ffi at m+b~roxi ~+P" rffil, .... I; P, =Q1bir (2.11) 

Volte,rra [31] considered a system with N point masses, the velocities of which in a Cartesian system of coordinates 
are related to the characteristics of the motion by relations of the form (2.4) 

:ti = biJl,, i = I ..... 3N, s = I ..... I 

where b~ = b~(Xl ..... x3N). Here Maggi's equations (2.11) take the form of Volterra's equations [31] 

d OT = c~ks)rlkrlr + Pr, k, r, s = I, .. I (2.12) 
dt Orlr "' 

Ors "~--'Ojs; m i = mi+ i ---mi+2; i, j = 1 . . . . .  3N 

where T(xl . . . . .  xaN, rh . . . . .  Tit ) is the kinetic energy. 
Without giving Maggi's derivation of Appell's equations from Eqs (1.14) here we note that they are simpler to 

derive directly from Eq. (1.12). Differentiating Eqs (2.4) with respect to time we have )~i ~ "  bis(x)~s "1- . . . .  where 
the dots denote terms not containing TIs. Hence we find that ati/Ofls = b~, as a result of which, from (1.12), we 
obtain Appell's equations 

O S l ~ s = I I  s, s = l  . . . . .  1 (2.13) 

where S = mv~2/2 is the energy of the accelerations and I-I s = Fv. bsv is the generalized force referred to the quasi- 
coordinate ns [30]. 

We will show, finally, that Kane's equations are equivalent to Poincar6's equations. By (1.6) 5rv = t~sXsr v (v = 
1 . . . . .  N, s = 1 . . . . .  /). Substituting these expressions into (1.12) we obtain the equations of motion in the form 

m v r v . X s g v = F v . X s r v ,  s = l  . . . . .  l 

For a system with Lagrangian coordinates qi subject to non-integrable constraints 

#j = bjs(t, q)lls + b f t ,  q), j = ! + 1 . . . . .  n; s = 1 . . . . .  l 

and operators (1.5) of the form 

0 f  
x,f = ~ + bj, Oqj oqs 

Eqs (2.14) are identical with Kane's equations [32, Eqs (19)] 

(2.14) 
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K q a + K ~ - - 0 ,  s - - 1  . . . . .  1 

which, consequently, are equiyalent to Eqs (2.5). 

This  r e sea rch  w~Ls ca r r i ed  ou t  with f inancial  suppor t  f rom the  Russ ian  Founda t ion  for  Basic  Resea rch  
(96-01-00261) and  the In t e rna t iona l  Assoc ia t ion  for  P romot ing  C o - o p e r a t i o n  with Scientis ts  f rom the  
I n d e p e n d e n t  S ta tes  o f  the  f o r m e r  Soviet  Un ion  ( I N T A S  93-1621). 
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